

Vincenzo Calabrò

Introduzione al corso

Principali compiti dei sistemi informatici:

 raccolta, l'organizzazione e la conservazione di dati

Questo corso è dedicato alla gestione dei dati tramite sistemi informatici, in particolare:

- modelli di rappresentazione dei dati
- linguaggi di interrogazione per l'aggiornamento e il ritrovamento dei dati
- metodologie per la progettazione di basi di dati

Introduzione alle basi di dati

In questa lezione introduciamo i concetti principali, in particolare:

• Dati

• Basi di dati

DBMS (Data Base Management System)

Sistema organizzativo

Insieme di risorse e regole per lo svolgimento coordinato delle attività al fine del proseguimento degli scopi dell'organizzazione

Risorse di una azienda (amministrazione):

- persone
- denaro
- materiali
- informazioni

Nello svolgimento di ogni attività sono essenziali la disponibilità di informazioni e la capacità di gestirle in modo efficace

Sistema informativo e informatico

Sistema informativo

- componente del sistema organizzativo per la
 - raccolta e acquisizione
 - archiviazione
 - elaborazione
 - distribuzione, scambio e condivisione

delle informazioni

Sistema informatico

 parte del sistema informativo che gestisce le informazioni per mezzo di tecnologie informatiche

Gestione delle informazioni

Nelle attività umane, le informazioni sono gestite in forme diverse:

- idee informali
- linguaggio naturale
- disegni, grafici, schemi
- codici (anche segreti)

e su vari supporti (dalla memoria umana alla carta).

Nei sistemi informatici le informazioni vengono rappresentate per mezzo di dati (la cui interpretazione fornisce informazione)

Informazione e dati

Informazione

 notizia, dato o elemento che consente di avere conoscenza di fatti, situazioni o modi di essere

Dato

 elemento di informazione costituito da simboli che devono essere elaborati

<u>Esempio</u>

- "Mario Rossi" e "dipartimento 2" sono due dati;
- "Mario Rossi è il responsabile del dipartimento 2" rappresenta l'informazione (interpretazione dei dati)

Base di dati

Genericamente parlando una base di dati è una collezione di dati utilizzati per rappresentare le informazioni di interesse per il sistema informativo

Collezione di dati gestita da un DBMS (Data Base Management System)

Data Base Management System (DMBS)

Sistema software per la gestione di collezioni di dati:

- grandi (dimensioni molto maggiori della memoria centrale)
- condivise (utilizzate da più utenti e applicazioni)
- persistenti (tempo di vita indipendente dalle singole esecuzioni dei programmi che li usano)

DMBS (2)

I DBMS garantiscono:

- affidabilità (resistenza a malfunzionamenti hw/sw)
- privatezza dei dati (accesso selettivo)
- efficienza (utilizzando al meglio le risorse spazio e tempo del sistema)
- efficacia (rendendo produttive le attività dei suoi utilizzatori)

DBMS vs file system

Collezioni di dati grandi e persistenti possono essere gestite anche tramite file system.

I DBMS:

- estendono le funzioni del file system provvedendo più servizi e funzionalità, in maniera integrata
- utilizzano i file per la memorizzazione dei dati ed operano sopra il file system

File system e DBMS

Dati nei DBMS

Esistono descrizioni e rappresentazioni dei dati a diversi livelli

I programmi e gli utenti fanno riferimento alla struttura a livello più alto (modello dei dati), non preoccupandosi della rappresentazione a basso livello (file system)

La descrizione e la organizzazione dei dati ad alto livello utilizza un modello dei dati

Modello dei dati

Insieme di concetti e costrutti utilizzato per organizzare i dati di interesse

Fornisce meccanismi di strutturazione (o costruttori di tipo) che permettono di definire nuovi tipi sulla base di tipi (elementari) predefiniti

Il modello più diffuso è il modello relazionale: basato sul costruttore relazione (tabella) che permette di definire insiemi di record omogenei

Relazioni (esempi)

CORSI

Corso	Docente	Aula
Architetture	Rossi	Alfa
Basi di dati	Neri	Beta
Linguaggi	Bianchi	Gamma
Sistemi	Verdi	Beta

AULE

Nome	Piano
Alfa	Terra
Beta	Terra
Gamma	Primo
Delta	Primo

Altri modelli

Gerarchico

Basato su strutture ad albero (anni 60)

Reticolare

Basato su grafi (anni 70)

Ad oggetti

 Estende il modello relazionale con il paradigma della programmazione ad oggetti (anni 80)

Come il modello relazionale sono modelli logici (pur essendo astratti riflettono una particolare organizzazione dei dati)

Modelli logici e concettuali

Modelli logici

- Utilizzati nei DBMS per l'organizzazione dei dati
- Ad essi fanno riferimento i programmi
- Sono indipendenti dalle strutture fisiche

Modelli concettuali

- Utilizzati nelle fasi preliminari della progettazione della base di dati
- Rappresentano i concetti del mondo reale senza dipendere da una particolare organizzazione
- Sono indipendenti da ogni sistema

Schemi e istanze

In ogni base di dati esistono:

schema (o componente intensionale)

- descrive la struttura dei dati
- sostanzialmente invariante nel tempo

istanza o stato (o componente estensionale)

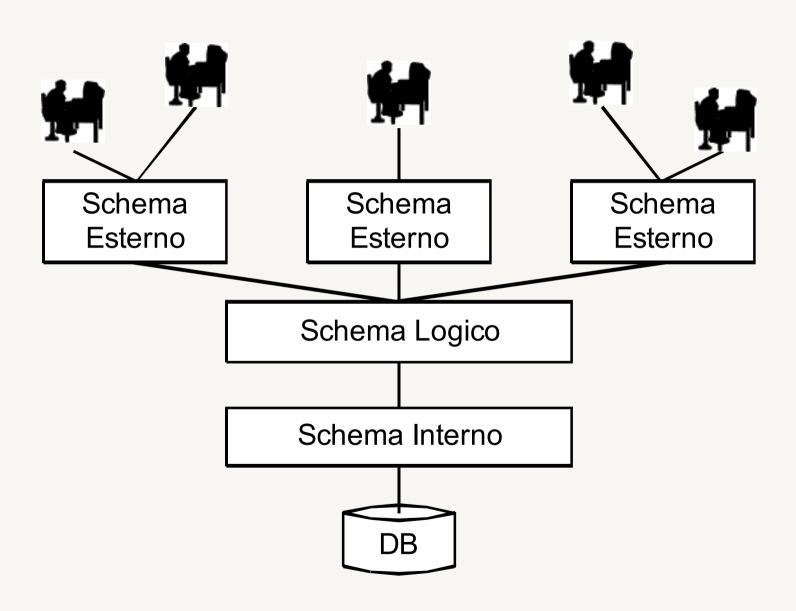
- costituita dai valori effettivi dei dati
- variabile nel tempo

Schemi e istanze: esempio

Nel modello relazionale

- schema di una relazione: intestazione (nome e attributi) della relazione
- istanza di una relazione: insieme delle righe della relazione

CORSI


Corso	Docente	Aula
Architetture	Rossi	Alfa
Basi di dati	Neri	Beta
Linguaggi	Bianchi	Gamma
Sistemi	Verdi	Beta

Livelli di astrazione nei DBMS

Architettura standardizzata (ANSI/SPARC) per DBMS fa riferimento a tre livelli (ognuno con un proprio schema)

- Schema logico: descrizione dell'intera base di dati per mezzo del modello logico
- Schema interno: rappresentazione dello schema logico per mezzo di strutture fisiche di memorizzazione
- Schema esterno: descrizione, per mezzo del modello logico, di una porzione della base di dati di interesse (riflette la vista sui dati di un particolare utente o gruppo di utenti)

Architettura ANSI/SPARC

Viste

Nei sistemi più moderni il livello esterno non è esplicitamente presente ma è possibile definire relazioni derivate (o viste)

CORSI

Corso	Docente	Aula
Architetture	Rossi	Alfa
Basi di dati	Neri	Beta
Linguaggi	Bianchi	Gamma
Sistemi	Verdi	Beta

AULE

Nome	Piano	
Alfa	Terra	
Beta	Terra	
Gamma	Primo	
Delta	Primo	

LEZIONI

Corso	Aula	Piano
Architetture	Alfa	Terra
Basi di dati	Beta	Terra
Linguaggi	Gamma	Primo
Sistemi	Beta	Terra

Indipendenza dei dati

Garantita dall'articolazione in livelli, e dal fatto che l'accesso avviene solo tramite livello esterno (che può coincidere con quello logico)

Indipendenza fisica

 Il livello logico e il livello esterno sono indipendenti dal livello fisico

Indipendenza logica

• Il livello esterno è indipendente dal livello logico

Indipendenza fisica

Il livello logico e esterno sono indipendenti da quello fisico

- Utenti e applicazioni interagiscono con il DBMS in modo indipendente dalla struttura fisica dei dati
- Modifiche alla struttura fisica (organizzazione dei file o loro allocazione sui dispositivi) non influiscono sul livello logico e quindi sulle applicazioni che accedono ai dati

Indipendenza logica

Il livello esterno è indipendente da quello logico

- È possibile aggiungere o modificare uno schema esterno senza influire sullo schema logico
- È possibile modificare lo schema logico mantenendo inalterati gli schemi esterni visibili agli utenti

Linguaggi per basi di dati (1)

Due categorie principali

DDL (Data Definition Language)

- linguaggi per la definizione dei dati
- per definire gli schemi logici, esterni, e fisici e le autorizzazioni di accesso

DML (Data Manipulation Language)

- linguaggi per la manipolazione dei dati
- per definire, interrogare e aggiornare le istanze di basi di dati

Alcuni linguaggi (es., SQL) offrono entrambe le funzionalità

Linguaggi per basi di dati (2)

- Linguaggi testuali interattivi (es., SQL)
- Comandi (come quelli del linguaggio interattivo) immersi in un linguaggio ospite (es., C, Cobol, ...)
- Comandi (come quelli del linguaggio interattivo) immersi in linguaggi ad hoc spesso con funzionalità specifiche (es., per grafici o stampe complesse o maschere video)
- Interfacce amichevoli che permettono di scrivere interrogazioni senza linguaggio testuale (es., Access)

Categorie di utenti

Amministratore della base di dati (DBA)

 persona o gruppo di persone responsabile della progettazione (o parte di), controllo e amministrazione della base di dati

Progettisti e programmatori delle applicazioni

 definiscono e realizzano i programmi che accedono alla base di dati

Utenti

- Finali (terminalisti): utilizzano transazioni (programmi che realizzano attività predefinite)
- Casuali: utilizzano i linguaggi interattivi per accedere alla base di dati in modo non predefinito (casuale)

Vantaggi dei DBMS

- Dati come risorsa comune a disposizione di tutte le componenti del sistema
- Base di dati come modello unificato del mondo reale di interesse utilizzabile dalle applicazioni
- Gestione centralizzata con possibilità di standardizzazione e economia di scala
- Riduzione di ridondanze e inconsistenze
- Indipendenza dei dati, favorisce lo sviluppo e la gestione delle applicazioni

Svantaggi dei DBMS

- DBMS sono prodotti costosi e complessi, il loro utilizzo comporta quindi notevoli investimenti (diretti e indiretti)
- DBMS forniscono, in forma integrata, serie di servizi non scorporabili. Quando questi servizi non sono necessari, la loro presenza puo` provocare una riduzione delle prestazioni

VINCENZO CALABRÒ

LinkedIn vincenzocalabro

www.vincenzocalabro.it