

Vincenzo Calabrò

Modello relazionale

Proposto da Codd nel 1970 come modello che favorisce l'indipendenza dei dati

Reso disponibile come modello logico nei sistemi reali nel 1981 (affermazione lenta causa l'alto livello d'astrazione)

Si basa su:

- concetto matematico di relazione
- rappresentazione di relazioni tramite tabelle

Relazione

Tre diverse accezioni

- Relazione matematica (secondo la teoria degli insiemi)
- Relazione secondo il modello relazionale (tabella)
- Relazione (relationship) come costrutto del modello concettuale Entità-Relazione (Entity-Relationship) utilizzato nella progettazione

Relazione matematica (1)

Siano D_1 , D_2 , ..., D_n , n insiemi (anche non distinti)

Prodotto cartesiano $D_1 \times D_2 \times ... \times D_n$ è l'insieme di tutte le n-uple ordinate $(d_1, d_2, ..., d_n)$ tali che $d_1 \in D_1$, $d_2 \in D_2$, ..., $d_n \in D_n$

• $D_1 \times D_2 \times ... \times D_n = \{(d_1, d_2, ..., d_n) | d_1 \in D_1, d_2 \in D_2, ..., d_n \in D_n\}$

Una relazione matematica su D_1 , D_2 , ..., D_n è un sottoinsieme del prodotto cartesiano $D_1 \times D_2 \times ... \times D_n$

Può essere rappresentata in forma tabellare

Relazione matematica (2)

Data relazione matematica su D_1 , D_2 , ..., D_n

- Domini della relazione: D_1 , D_2 , ..., D_n
- Grado della relazione: il numero di domini n su cui è definita
- Cardinalità della relazione: numero di n-uple che ne fanno parte (cardinalità dell'insieme relazione)
 - Cardinalità prodotto cartesiano $|D_1| \times |D_2| \times ... \times |D_n|$

Tipicamente: cardinalità finite su insiemi eventualmente infiniti

Relazione matematica: esempio

$$D_1 = \{a, b\} = \begin{bmatrix} a \\ b \end{bmatrix}$$
 $D_2 = \{x, y, z\} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

Prodotto cartesiano
$$c = D_1 \times D_2 =$$

• grado(c)=2; card(c)=|c|=6

а	X
a	У
a	Z
b	X
b	У
b	Z

Un esempio di relazione $r \subseteq D_1 \times D_2 =$

•
$$grado(r)=2$$
; $card(r)=|r|=3$

Relazione matematica: proprietà

Una relazione sui domini D_1 , D_2 , ..., D_n è un insieme di n-uple ordinate d_1 , d_2 , ..., d_n tali che $d_1 \in D_1$, $d_2 \in D_2$, ..., $d_n \in D_n$

- La relazione è un insieme:
 - non vi è alcun ordinamento fra le n-uple
 - le n-uple di una relazione sono distinte una dall'altra
- Le *n*-uple sono ordinate:
 - vi è un ordinamento fra domini, l'i-esimo valore di ogni n-upla proviene dall'i-esimo dominio

Relazione matematica: esempio

Partite ⊆ Squadre x Squadre x Integer x Integer

Juve	Lazio	3	1
Lazio	Milan	1	0
Juve	Roma	2	2
Roma	Milan	1	3
Milan	Juve	1	0

 Ciascuno dei domini ha due ruoli distinti, distinguibili secondo la loro posizione

• La struttura è posizionale

Relazione nel modello relazionale

A ciascun dominio associamo un nome (attributo), unico nella relazione, che descrive il suo "ruolo" nella relazione

- Gli attributi possono essere usati come intestazione delle colonne nelle tabelle
- L'ordinamento fra gli attributi e irrilevante:
 la struttura non è posizionale

Casa	Fuori	RetiCasa	RetiFuori
Juve	Lazio	3	1
Lazio	Milan	1	0
Juve	Roma	2	2
Roma	Milan	1	3
Milan	Juve	1	0

Relazione: definizione

Sia X l'insieme degli attributi e D l'insieme dei domini

Definiamo:

- funzione $dom: X \rightarrow D$, che associa ad ogni attributo $A \in X$ il suo dominio $dom(A) \in D$
- una n-upla o tupla su X è una funzione t che associa a ciascun attributo A in X un valore nel dominio dom(A)

Una relazione su X è un insieme di tuple su X

Relazione: notazione

Sia t una tupla su X, siano $A \in X$ e $Y \subseteq X$:

- t[A] o t.A: valore dell' attributo A in t
- *t*[*Y*]: valore del sottoinsieme di attributi *Y* in *t*

Casa	Fuori	RetiCasa	RetiFuori
Juve	Lazio	3	1
Lazio	Milan	1	0
Juve	Roma	2	2

Sia t la tupla della prima riga:

- *t*[Casa]=*t*.Casa=Juve
- t[Casa, RetiCasa]=[Juve, 3]

Tabelle e relazioni

Una tabella rappresenta una relazione se soddisfa le seguenti proprietà:

- i valori di ogni colonna sono omogenei fra loro
- le righe sono diverse fra loro
- le intestazioni delle colonne sono diverse fra loro

Inoltre, in una tabella che rappresenta una relazione:

- l'ordinamento fra le righe è irrilevante
- l'ordinamento fra le colonne è irrilevante

Modello relazionale: definizioni

Schema di relazione R(X)

- R nome di relazione
- $X = \{A_1, ..., A_n\}$ insieme di attributi

Schema di base di dati $\mathbf{R} = \{R_1(X_1), ..., R_n(X_n)\}$

• $\{R_1(X_1), ..., R_n(X_n)\}$ insieme di schemi di relazioni con nomi diversi

(Istanza di) relazione r su uno schema R(X)

• Insieme *r* di tuple su *X*

(Istanza di) base di dati r su uno schema R

• Insieme di relazioni $\mathbf{r} = \{r_1, ..., r_n\}$ (\mathbf{r}_i definita su $R_i(X_i)$)

Notazioni

- Attributi
 - lettere iniziali dell'alfabeto A, B, C, A', A₁, ...
- Insiemi di attributi
 - lettere finali dell'alfabeto: X, Y, Z, X', X₁, ...
- Nomi di relazione (nello schema)
 - R e lettere circostanti (maiuscole): R, S, R', R₁, ...
- Relazione (istanza)
 - come il nome della relazione, ma minuscolo: r, s, r', r_1
- Schema di base di dati
 - R e circostanti (maiuscole, grassetto): **R, S, R', R₁,** ...
- Base di dati (istanza)
 - come il nome dello schema, ma minuscolo: r, s, r',
 r₁,...

Modello relazionale basato su valori

I riferimenti fra dati di relazioni diverse sono rappresentati per mezzo di valori dei domini che compaiono nelle tuple

CORSI

Corso	Docente	Aula
Architetture	Rossi	Alfa
Basi di dati	Neri	Beta
Linguaggi	Bianchi	Gamma
Sistemi	Verdi	Beta

AULE

Nome	Piano
Alfa	Terra
Beta	Terra
Gamma	Primo
Delta	Primo

I puntatori possono esistere a livello fisico, ma non sono visibili a livello logico

Vantaggi utilizzo valori

Rispetto ad un modello basato su record e puntatori, il modello basato sui valori:

- rappresenta solo ciò che è rilevante dal punto di vista dell'applicazione (i puntatori sono aspetti realizzativi a basso livello)
- fornisce indipendenza della rappresentazione logica rispetto a quella fisica (indipendenza fisica dei dati)
- favorisce portabilità dei dati (tutta l'informazione è nei valori)
- le associazioni fra i valori sono bidirezionali

Strutture nidificate

Il modello relazionale ammette solo valori scalari

È possibile però rappresentare informazione strutturata organizzando propriamente i dati

Strutture nidificate: esempio (1)

	"DA MARIO"		
	Ricevuta n. 2453		
	del 6/	7/2005	
3	Coperti	6.00	
2	Antipasti	15.00	
3	Primi	27.00	
2	Secondi	42.00	
3	Caffè	6.00	
1	Acqua	3.00	
	Totale	99.00	

	"DA MARIO"	
	Ricevuta	n. 2564
	del 8	/7/2005
2	Coperti	4.00
2	Primi	27.00
2	Secondi	42.00
2	Dessert	12.00
2	Caffè	4.00
1	Vino	25.00
1	Acqua	3.00
	Totale	117.00

Strutture nidificate: esempio (2)

DETTAGLIO

Numero	Q.ta	Descr.	Importo
2453	3	coperti	6.00
2453	2	antipasti	15.00
2453	3	primi	27.00
2453	2	secondi	42.00
2453	3	caffè	6.00
2453	1	acqua	3.00
2564	2	coperti	4.00
2564	2	primi	27.00
2564	2	secondi	42.00
2564	2	dessert	12.00
2564	2	caffè	4.00
2564	1	vino	25.00
2564	1	acqua	3.00

RICEVUTE

Num	Data	Totale
2453	6/7/05	99.00
2564	8/7/05	117.00

Strutture nidificate: esempio (3)

La rappresentazione data per le ricevute è corretta se:

- l'ordine delle righe è irrilevante
- non ci possono essere due righe ripetute

Se queste condizioni non sono soddisfatte è necessario distinguere le singole righe nelle ricevute

Strutture nidificate: esempio (4)

DETTAGLIO2

Riga Numero Q.ta Imp. Descr. 6.00 2453 3 coperti 2453 antipasti 15.00 3 2453 primi 27.00 2453 secondi 42.00 4 2453 5 3 caffè 6.00 2453 6 acqua 3.00 4.00 2564 coperti primi 27.00 2564 3 2564 secondi 42.00 12.00 2564 4 dessert caffè 4.00 5 2564 25.00 2564 6 vino 3.00 2564 acqua

RICEVUTE

Num	Data	Totale
2453	6/7/05	99.00
2564	8/7/05	117.00

Informazione incompleta

Città	Prefettura
Roma	Via IV Novembre
Firenze	
Tivoli	
Prato	

Diverse semantiche:

- valore sconosciuto: Firenze ha prefettura ma non conosciamo indirizzo
- valore inesistente: Tivoli non è provincia, non ha prefettura
- senza informazione (valore sconosciuto o inesistente): Prato è nuova provincia e non sappiamo se ha prefettura

Valori nulli

Nel modello relazionale

- Valore nullo (NULL): denota assenza di un valore del dominio (senza informazione)
- Formalmente si estende il concetto di n-upla: per ogni attributo A, t[A] è un valore del dominio oppure il valore nullo NULL
- Si pongono restrizioni sulla presenza di valori nulli (a livello di definizione delle relazioni)

Valori nulli: esempi

Troppi valori nulli!

STUDENTI

Matr.	Cognome	Nome	Data-nasc
276545	Rossi	Maria	NULL
NULL	Neri	Anna	23/04/1972
NULL	Verdi	Fabio	12/02/1972

ESAMI

Studente	Voto	Corso
276545	28	01
NULL	27	NULL
200768	24	NULL

CORSI

Codice	Titolo	Docente	
01	Analisi	Giani	
03	Chimica	NULL	
NULL	Chimica	Belli	

Vincoli di integrità: esempi

Esistono istanze di basi di dati che, pur sintatticamente corrette, non rappresentano valori corretti per l'applicazione

STUDENTI

Matr.	Cognome	Nome	Data-nasc
200768	Verdi	Fabio	12/02/1972
937653	Rossi	Luca	10/10/1971
937653	Bruni	Mario	11/02/1971

ESAMI

Studente	Voto	Lode	Corso
200768	36		05
937653	28	Lode	02
276745	25		01

CORSI

Cod	Titolo	Docente
01	Analisi	Giani
02	Chimica	Melli
03	Chimica	Belli

Vincoli di integrità (1)

Proprietà che deve essere soddisfatta dalle istanze che rappresentano informazioni corrette per l'applicazione

Ogni vincolo può essere visto come un predicato che associa ad ogni istanza valori:

• vero: il vincolo è soddisfatto

• falso: il vincolo non è soddisfatto

Ogni schema di base di dati ha associato un insieme di vincoli. Sono corrette solo le istanze della base di dati che soddisfano tutti i vincoli

Vincoli di integrità (2)

Intra-relazionali (soddisfacimento definito rispetto a singole relazioni)

- di tupla: vincolo che può essere valutato su ciascuna tupla indipendentemente dalle altre
- su valori (o di dominio): vincolo definito con riferimento a singoli valori, è valutato sul singolo attributo
- di chiave: vincolo definito rispetto a un insieme di attributi che identificano univocamente le tuple all'interno di una relazione

Inter-relazionali (coinvolge più relazioni)

Vincolo di tupla

Esprime condizioni sui valori di ciascuna tupla indipendentemente dalle altre

 espressione booleana (AND, OR, NOT) di atomi che confrontano valori di attributo o espressioni aritmetiche su attributi

<u>Esempi</u>

ESAMI(Studente, Voto, Lode, Corso)
 NOT (Lode = 'lode') OR (Voto = 30)

PAGAMENTI(Data,Importo,Ritenute,Netto)
 Netto = Importo - Ritenute

Vincolo di dominio

Esprime condizioni sui valori di singoli attributi all'interno di una tupla indipendentemente dagli altri

 espressione booleana (AND, OR, NOT) di atomi che confrontano valori di attributo con costanti

<u>Esempi</u>

ESAMI(Studente, Voto, Lode, Corso)

```
(Voto ≥ 18) AND (Voto ≤ 30)
(Lode = 'lode') OR (Lode = NULL)
```

Chiavi

La chiave è un insieme di attributi utilizzato per identificare univocamente le tuple all'interno di una relazione

Un insieme di attributi K è superchiave di una relazione r se r non contiene due tuple distinte t_1 e t_2 con $t_1[K]=t_2[K]$

Un insieme di attributi K è chiave di una relazione r se è una superchiave minimale (cioè non esiste un' altra superchiave $K' \subset K$)

Chiavi: esempio

Matricola	Cognome	Nome	Nascita	Corso
4328	Rossi	Luigi	29/04/59	Sicurezza
6328	Rossi	Dario	29/04/59	Sicurezza
4766	Rossi	Luca	01/05/61	Informatica
4846	Neri	Luca	01/05/61	Matematica
5536	Neri	Luca	05/03/58	Sicurezza

Esempio

chiavi:

- Matricola
- Cognome, Nome, Nascita
- Nome, Corso

superchiavi:

• qualsiasi superinsieme che contiene le chiavi

Chiavi: esistenza

Ogni relazione R(X) ha sempre almeno una superchiave (e quindi una chiave):

insieme di tutti i suoi attributi X

Esistenza di una chiave per ogni relazione:

- garantisce accessibilità a tutti i valori della base di dati e loro identificabilità
- permette di ricostruire le corrispondenze (associazioni) fra i dati contenuti in relazioni diverse

Chiave primaria

È necessario limitare la presenza di valori nulli nelle chiavi

In ogni relazione una chiave è identificata come chiave primaria:

- non sono permessi valori nulli per gli attributi della chiave primaria
- può essere un attributo aggiunto apposta per l'identificazione

Chiave primaria: esempi

Notazione:

 per distinguere la chiave primaria sottolineiamo i nomi degli attributi che ne fanno parte

<u>Esempi</u>

- STUDENTI (Matricola, Nome, Cognome)
- SEMINARI (<u>Codice</u>, Relatore, Titolo, data)
- RICEVUTE (<u>Num</u>, Data, Totale)
- DETTAGLIO2(<u>Numero, Riga</u>, Q.ta, Descr, Importo)

Vincoli inter-relazionali: integrità referenziale

- R(X) e S(Y) due relazioni
- $X' \subset X$; $X' = A_1, A_2, ..., A_n$
- $Y' \subseteq Y$; $Y' = B_1$, B_2 , ..., B_n (chiave primaria di S)

Vincolo di integrità referenziale fra X' e Y':

• per ogni tupla $t_r \in R$ deve esiste una tupla $t_s \in S$ con $t_r[A_i] = t_s[B_i]$, oppure $t_r[A_i] = \text{NULL}$, i = 1, ..., n

Le tuple in R possono avere per X' (chiave esterna) solo n-uple di valori esistenti per Y' in S

Integrità referenziale: esempio (1)

RICEVUTE

<u>Num</u>	Data	Totale	
2453	6/7/05	99.00	
2564	8/7/05	117.00	

R=DETTAGLIO S=RICEVUTE X'=Numero Y'=Num

Chiave esterna:

• Numero in DETTAGLIO

Referenzia:

 Num in RICEVUTE In rosso le violazioni al vincolo

DETTAGLIO

Numero	<u>Riga</u>	Q.ta	Descr.	Imp.
2453	1	3	coperti	6.00
2453	2	2	antipasti	15.00
2453	3	3	primi	27.00
2453	4	2	secondi	42.00
2453	5	3	caffè	6.00
2453	6	1	acqua	3.00
2564	1	2	coperti	4.00
2564	2	2	primi	27.00
2564	3	2	secondi	42.00
2564	4	2	dessert	12.00
2564	5	2	caffè	4.00
2564	6	1	vino	25.00
2564	7	1	acqua	3.00
2675	1	1	acqua	3.00

www.vincenzocalabro.it

Integrità referenziale: esempio (2)

R=INFRAZIONI

S = AUTO

X' = Prov, Num

Y'=Provincia, Numero

Chiave esterna:

Prov, Num in INFRAZIONI

Referenzia:

 Provincia, Numero in AUTO

In rosso le violazioni al vincolo

INFRAZIONI

Codice	Data	Prov	Num
987554	12/10/05	FI	4E5432
630876	15/10/05	MI	2F7653
726375	15/10/05	FI	4G7686
123435	11/10/05	МО	7D6563

AUTO

<u>Provincia</u>	Numero	Proprietario
FI	4E5432	Rossi Mario
MI	9H4467	Verdi Paolo
FI	7D6563	Gialli Sara
МО	4G7686	Bianchi Silvia

Linguaggi per basi di dati

Possibili classificazioni:

- formali o programmativi
- procedurali o dichiarativi

Algebra

- formale
- procedurale

SQL

- programmativo
- dichiarativo

Algebra relazionale (1)

• Definita da CODD (1970)

Utile per imparare a formulare query

 Insieme di 5 operatori di base danno l'intero potere espressivo del linguaggio

Algebra relazionale (2)

Operatori di base

- selezione
 - seleziona un insieme di tuple (righe)
- proiezione
 - seleziona un insieme di colonne
- unione
 - insieme di tuple che appartengono a due relazioni
- differenza
 - insieme di tuple che appartengono a una relazione e non all'altra
- prodotto cartesiano
 - combinazione di tuple di due relazioni

Algebra relazionale (3)

Operatori derivati

- intersezione
 - tuple che appartengono a due relazioni
- join (naturale, theta-join, equi-join)
 - selezione su un prodotto cartesiano

Operatori aggiunti

- ridenominazione
 - ridenomina un attributo
- assegnamento
 - dà un nome alla relazione risultante da una operazione

Algebra relazionale (4)

Vedremo le operazioni nel seguente ordine

- operatori aggiunti:
 - ridenominazione
 - assegnamento
- operatori unari
 - selezione
 - proiezione
- operatori binari
 - unione
 - differenza
 - intersezione
 - prodotto cartesiano
 - join (naturale, theta-join, equi-join)

Ridenominazione (1)

 $\rho_{B1,B2,...,Bn}$ $\leftarrow_{A1,A2,...,An}$ r

- r: relazione
- A1,A2,...,An: lista di attributi che appartengono a r (sottoinsieme)
- B1,B2,...,Bn: nuovo nome da dare agli attributi A1,A2,...,An

Ridenominazione (2)

 $\rho_{B1,B2,...,Bn}$ \leftarrow A1,A2,...,An

Il risultato è una relazione senza nome uguale ad r tranne per il nome degli attributi modificati

- schema: schema di $r \{A1, A2, ..., An \} \cup \{B1, B2, ..., Bn\}$
- grado: grado(r)
- cardinalità: card(r)

Ridenominazione: esempio

CORSI

Corso	Docente	Aula
Architetture	Rossi	Alfa
Basi di dati	Neri	Beta
Linguaggi	Bianchi	Gamma
Sistemi	Verdi	Beta

$\rho_{Insegnam, Prof \leftarrow Corso, Docente} \ CORSI$

Insegnam	Prof	Aula
Architetture	Rossi	Alfa
Basi di dati	Neri	Beta
Linguaggi	Bianchi	Gamma
Sistemi	Verdi	Beta

Assegnamento

risultato := espressione algebrica

 risultato: nome da dare alla relazione risultato dell'espressione

Serve per dare un nome al risultato di una espressione algebrica

Assegnamento: esempio

CORSI

Corso	Docente	Aula
Architetture	Rossi	Alfa
Basi di dati	Neri	Beta
Linguaggi	Bianchi	Gamma
Sistemi	Verdi	Beta

 $INSEGNAMENTI := \rho_{Insegnam, Prof \leftarrow Corso, Docente} \ CORSI$

INSEGNAMENTI

Insegnam	Prof	Aula
Architetture	Rossi	Alfa
Basi di dati	Neri	Beta
Linguaggi	Bianchi	Gamma
Sistemi	Verdi	Beta

Algebra relazionale

- operatori aggiunti:
 - ridenominazione
 - assegnamento
- operatori unari
 - selezione
 - proiezione
- operatori binari
 - unione
 - differenza
 - intersezione
 - prodotto cartesiano
 - join (naturale, theta-join, equi-join)

Selezione (1)

Gcondizione **r**

- r: relazione
- condizione: espressione booleana (\land,\lor,\neg) di condizioni atomiche del tipo $A \theta B$ o $A \theta C$
 - $\boldsymbol{\theta}$ è un operatore di confronto $(=, \neq, <, >, \leq, \geq)$
 - A e B sono attributi di r su cui l'operatore di confronto abbia senso
 - c è una costante compatibile con il dominio di A

Il risultato è una relazione senza nome che contiene tutte le tuple di *r* che soddisfano *condizione*

Selezione (2)

Gcondizione **r**

Il risultato è una relazione senza nome che contiene tutte le tuple di *r* che soddisfano *condizione*

• schema: schema di r

• grado: grado(r)

• cardinalità: $\leq card(r)$

Selezione: esempi

CORSI

Corso	Docente	Aula
Architetture	Rossi	Alfa
Basi di dati	Neri	Beta
Linguaggi	Bianchi	Gamma
Sistemi	Verdi	Beta

 $\sigma_{Aula='Beta'}$ CORSI

Corso	Docente	Aula
Basi di dati	Neri	Beta
Sistemi	Verdi	Beta

Aula= 'Gamma' vCorso= 'Sistemi'

CORSI

Corso	Docente	Aula
Linguaggi	Bianchi	Gamma
Sistemi	Verdi	Beta

Proiezione (1)

 $\prod_{Y} r$

• r: relazione

• *Y*: sottoinsieme degli attributi di *r*

Il risultato è una relazione senza nome che contiene la restrizione delle tuple di *r* agli attributi *Y* (le colonne *Y*)

Proiezione (2)

$\prod_{Y} r$

Il risultato è una relazione senza nome che contiene la restrizione delle tuple di *r* agli attributi *Y* (le colonne *Y*)

- schema: Y
- grado: |*Y*|
- cardinalità: $\leq card(r)$
 - uguale se Y è superchiave
 - può essere minore altrimenti (i duplicati sono eliminati)

Proiezione: esempi

CORSI

Corso	Docente	Aula
Architetture	Rossi	Alfa
Basi di dati	Neri	Beta
Linguaggi	Bianchi	Gamma
Sistemi	Verdi	Beta

 $\prod_{Corso, Docente} CORSI$

Corso	Docente
Architetture	Rossi
Basi di dati	Neri
Linguaggi	Bianchi
Sistemi	Verdi

 Π_{Aula} CORSI

Aula
Alfa
Beta
Gamma

Selezione, proiezione: esempio

CORSI

Corso	Docente	Aula
Architetture	Rossi	Alfa
Basi di dati	Neri	Beta
Linguaggi	Bianchi	Gamma
Sistemi	Verdi	Beta

$$\prod_{\text{Docente}} (\sigma_{\text{Aula='Beta'}} \text{ CORSI})$$

Docente

Neri Verdi

Selezione, proiezione, assegnamento: es.

CORSI

Corso	Docente	Aula
Architetture	Rossi	Alfa
Basi di dati	Neri	Beta
Linguaggi	Bianchi	Gamma
Sistemi	Verdi	Beta

BETA := $\sigma_{Aula='Beta'}$ CORSI

BETA

Corso	Docente	Aula
Basi di dati	Neri	Beta
Sistemi	Verdi	Beta

 $\prod_{\mathsf{Docente}} \mathsf{BETA}$

Docente

Neri Verdi

Algebra relazionale

- operatori aggiunti:
 - ridenominazione
 - assegnamento
- operatori unari
 - selezione
 - proiezione
- operatori binari
 - unione
 - differenza
 - intersezione
 - prodotto cartesiano
 - join (naturale, theta-join, equi-join)

Unione

*r*1 ∪ *r*2

• r1 e r2: relazioni sullo stesso insieme di attributi

Il risultato è una relazione senza nome che contiene tutte le tuple che appartengono a r1 e/o a r2

- tuple duplicate compaiono una sola volta
- schema: schema di r1 = schema di r2
- grado: grado(r1) = grado(r2)
- cardinalità:

```
\geq max(card(r1), card(r2))
```

 $\leq card(r1) + card(r2)$

STUDENTI

Cognome	Nome
Bianchi	Carla
Rossi	Marta
Rosa	Antonio

Unione: esempio IMPIEGATI

Cognome	Nome
Bianchi	Carla
Verdi	Matteo
Gialli	Maria
Viola	Marco

STUDENTI U IMPIEGATI = IMPIEGATI U STUDENTI

Cognome	Nome
Bianchi	Carla
Rossi	Marta
Rosa	Antonio
Verdi	Matteo
Gialli	Maria
Viola	Marco

Differenza

r1 – r2

• r1 e r2: relazioni sullo stesso insieme di attributi

Il risultato è una relazione senza nome che contiene tutte le tuple che appartengono a r1 ma non a r2

- schema: schema di r1 = schema di r2
- grado: grado(r1) = grado(r2)
- cardinalità:

```
\geq max(0, card(r1) - card(r2))
```

 $\leq card(r1)$

STUDENTI

Cognome	Nome
Bianchi	Carla
Rossi	Marta
Rosa	Antonio

Differenza: esempio IMPIEGATI

Cognome	Nome
Bianchi	Carla
Verdi	Matteo
Gialli	Maria
Viola	Marco

STUDENTI — IMPIEGATI

Cognome	Nome
Rossi	Marta
Rosa	Antonio

IMPIEGATI — STUDENTI

Cognome	Nome
Verdi	Matteo
Gialli	Maria
Viola	Marco

Intersezione

$$r1 \cap r2$$

$$\equiv r1 - (r1 - r2)$$

• r1 e r2: relazioni sullo stesso insieme di attributi

Il risultato è una relazione senza nome che contiene tutte le tuple che appartengono sia a r1 sia a r2

- schema: schema di r1 = schema di r2
- grado: grado(r1) = grado(r2)
- cardinalità:

$$\geq 0$$

 $\leq min(card(r1), card(r2))$

Intersezione: esempio

STUDENTI

Cognome	Nome
Bianchi	Carla
Rossi	Marta
Rosa	Antonio

IMPIEGATI

Cognome	Nome
Bianchi	Carla
Verdi	Matteo
Gialli	Maria
Viola	Marco

STUDENTI ∩ IMPIEGATI = IMPIEGATI ∩ STUDENTI

Cognome	Nome
Bianchi	Carla

Algebra relazionale

- operatori aggiunti:
 - ridenominazione
 - assegnamento
- operatori unari
 - selezione
 - proiezione
- operatori binari
 - unione
 - differenza
 - intersezione
 - prodotto cartesiano
 - join (naturale, theta-join, equi-join)

Prodotto cartesiano

$r1 \times r2$

• r1 e r2: relazioni su insiemi di attributi disgiunti

Il risultato è una relazione senza nome che contiene tutte le tuple ottenute concatenando tuple di *r1* con tuple di *r2*

- schema: schema di r1 concatenato a quello di r2
- grado: grado(r1) + grado(r2)
- cardinalità: card(r1) * card(r2)

Prodotto cartesiano: esempio (1) STUDENTI CORSI

Cognome	Nome
Bianchi	Carla
Rossi	Marta
Rosa	Antonio

Codice	Titolo
CS101	Basidati
CS102	Sistemi

STUDENTI × CORSI = CORSI × STUDENTI

Cognome	Nome	Codice	Titolo
Bianchi	Carla	CS101	Basidati
Bianchi	Carla	CS102	Sistemi
Rossi	Marta	CS101	Basidati
Rossi	Marta	CS102	Sistemi
Rosa	Antonio	CS101	Basidati
Rosa	Antonio	CS102	Sistemi

Prodotto cartesiano: esempio (2)

CORSI AULE

Corso	Docente	Aula
Architetture	Rossi	Alfa
Basi di dati	Neri	Beta

Nome	Piano
Alfa	Terra
Beta	Primo

CORSI * AULE = AULE * CORSI

Corso	Docente	Aula	Nome	Piano
Architetture	Rossi	Alfa	Alfa	Terra
Architetture	Rossi	Alfa	Beta	Primo
Basi di dati	Neri	Beta	Alfa	Terra
Basi di dati	Neri	Beta	Beta	Primo

Join (theta) (1)

r1 ⋈_{condizione} r2

- r1 e r2: relazioni su insiemi di attributi disgiunti
- condizione: espressione booleana (\land,\lor,\lnot) di condizioni atomiche del tipo $A \theta B$
 - A è un attributo di r1
 - B è un attributo di r2
 - θ è un operatore di confronto (=,≠,<,>,≤,≥) che abbia senso per A e B

Equi-join: join in cui *condizione* è una congiunzione (\land) di atomi di uguaglianza (A=B)

Join (theta) (2)

$$r1 \bowtie_{condizione} r2 \equiv \sigma_{condizione} (r1 \times r2)$$

Il risultato è una relazione senza nome che contiene le tuple del prodotto cartesiano fra *r1* e *r2* che soddisfano *condizione*

- schema: schema di r1 concatenato a quello di r2
- grado: grado(r1) + grado(r2)
- cardinalità: ≥ 0 $\leq (card(r1) * card(r2))$

Join (theta): esempio (1)

CORSI AULE

Corso	Docente	Aula
Architetture	Rossi	Alfa
Basi di dati	Neri	Beta

Nome	Piano
Alfa	Terra
Beta	Primo

 $CORSI \bowtie_{Aula=Nome} AULE = AULE \bowtie_{Nome=Aula} CORSI$

Corso	Docente	Aula	Nome	Piano
Architetture	Rossi	Alfa	Alfa	Terra
Basi di dati	Neri	Beta	Beta	Primo

Join (theta): esempio (2)

STUDENTI

Matr	Cognome
11111	Bianchi
22222	Rossi
33333	Verdi

ESAMI

Stud	Esame
11111	CS101
22222	CS102
33333	CS101

CORSI

Codice	Titolo	
CS101	Basidati	
CS102	Sistemi	

STUDENTI Matr=Stud ESAMI Mesame=Codice CORSI

Matr	Cognome	Stud	Esame	Codice	Titolo
11111	Bianchi	11111	CS101	CS101	Basidati
22222	Rossi	22222	CS102	CS102	Sistemi
33333	Verdi	33333	CS101	CS101	Basidati

Join naturale (1)

*r*1 ⋈ *r*2

- r1 e r2: relazioni che potrebbero avere un insieme di attributi in comune
 - $-X_1$: attributi di r1
 - − X₂: attributi di *r*2
 - $-X_{12}=X_1 \cap X_2$

Il risultato è una relazione senza nome che contiene le tuple ottenute combinando le tuple delle due relazioni sugli attributi con ugual nome (eliminando le colonne doppie)

Join naturale (2)

$r1 \bowtie r2$

Il risultato è una relazione senza nome che contiene le tuple ottenute combinando le tuple delle due relazioni sugli attributi con ugual nome (eliminando le colonne doppie)

- schema: schema di r1 concatenato a quello di r2
 - attributi con ugual nome compaiono una sola volta
- grado: $grado(r1) + grado(r2) |X_{12}|$
- cardinalità: ≥ 0 $\leq card(r1) * card(r2)$ $\leq max(card(r1), card(r2))$ se X_{12} è chiave per almeno una fra r1 e r2

www.vincenzocalabro.it

Join naturale (3)

*r*1 ⋈ *r*2

Più precisamente:

- Se X_{12} , contiene una chiave per r2, allora il join di r1 e r2 contiene al più |r1| tuple
- Se X_{12} , contiene una chiave per r2, e sussiste il vincolo di integrità referenziale fra X_{12} (o un suo sottoinsieme) in r1 e la chiave di r2, allora il join di r1 e r2 contiene esattamente |r1| tuple

Join naturale: esempio (1)

CORSI AULE

Corso	Docente	Aula
Architetture	Rossi	Alfa
Basi di dati	Neri	Beta

Aula	Piano
Alfa	Terra
Beta	Primo

CORSI ⋈ AULE = AULE⋈ CORSI

Corso	Docente	Aula	Piano
Architetture	Rossi	Alfa	Terra
Basi di dati	Neri	Beta	Primo

Join naturale: esempio (2)

STUDENTI

Matr	Cognome
11111	Bianchi
22222	Rossi
33333	Verdi

ESAMI

Matr	Codice
11111	CS101
22222	CS102
33333	CS101

CORSI

Codice	Titolo
CS101	Basidati
CS102	Sistemi

STUDENTI MESAMI CORSI

Matr	Cognome	Codice	Titolo
11111	Bianchi	CS101	Basidati
22222	Rossi	CS102	Sistemi
33333	Verdi	CS101	Basidati

Join naturale (3)

*r*1⋈*r*2

- esprimibile come proiezione, equi-join, e ridenominazione
 - ridenominiamo gli attributi comuni
 - equi-join chiedendo l'uguaglianza degli attributi excomuni
 - proiezione per eliminare le colonne "doppie"

Esempio

(A,B,C): attributi di r1

(B,C,D): attributi di r2

$$r1 \bowtie r2 = \prod_{ABCD} (r1 \bowtie_{B=B' \land C=C'} (\rho_{B'C' \leftarrow BC}(r2)))$$

Join naturale (4)

*r*1 ⋈ *r*2

- X_1 : attributi di r1
- X₂: attributi di *r*2
- $X_{12} = X_1 \cap X_2$

due casi estremi:

- $X_1 = X_2$, $X_{12} = X_1 = X_2 \Rightarrow r1 \bowtie r2 = r1 \cap r2$
- $X_{12} = \varnothing \Rightarrow r1 \bowtie r2 = r1 \times r2$

Join

Esistono altre varianti del join naturale:

- semijoin: proietta il join su una relazione
- outer join: include le tuple che non hanno corrispondenza nell'altra relazione concatenandole con una tupla di valori nulli

Appartengono propriamente a SQL, li vedremo in quel contesto

Algebra relazionale

Linguaggio procedurale:

- l'ordine con cui vengono eseguite le operazioni ha effetto sul costo di esecuzione
- è importante scrivere le espressioni in modo da ottimizzare i costi (limitare le dimensione dei risultati intermedi)

Query SQL vengono tradotte dal DBMS in espressioni algebriche che vengono quindi ottimizzate (dal DBMS)

Equivalenza di espressioni

Una query può essere scritta secondo diverse espressioni algebriche

Due espressioni algebriche E1 e E2 che producono lo stesso risultato (indipendentemente dalle specifiche istanze delle relazioni coinvolte) si dicono equivalenti ($E1 \equiv E2$)

Trasformazioni di equivalenza permettono di trasformare una espressione in una espressione equivalente (meno costosa)

Trasformazioni di equivalenza

- Atomizzazione delle selezioni
- Idempotenza delle proiezioni
- Anticipazione delle selezioni rispetto al join
- Anticipazione delle proiezioni rispetto al join
- Inglobamento della selezione in un prodotto cartesiano
- Distributività della selezione rispetto all'unione
- Distributività della selezione rispetto alla differenza
- Distributività della proiezione rispetto all'unione
- Distributività del join rispetto all'unione
- Corrispondenza fra operatori insiemistici e selezioni
- Commutatività e associatività di tutti gli operatori binari ad eccezione della differenza

Atomizzazione delle selezioni

$$\mathbf{\sigma}_{C1 \wedge C2}(E) \equiv \mathbf{\sigma}_{C1}(\mathbf{\sigma}_{C2}(E))$$

- E espressione; C1,C2 condizioni

(È una trasformazione preliminare ad altre)

Esempio

STUDENTI(Matr, Cognome, Nome)

Idempotenza delle proiezioni

$$\Pi_X(E) \equiv \Pi_X(\Pi_{XY}(E))$$

- E espressione; X e Y insiemi di attributi

(È una trasformazione preliminare ad altre)

Esempio

STUDENTI(Matr,Cognome,Nome)

$$\Pi_{\text{Cognome}}$$
 (STUDENTI) = Π_{Cognome} (Π_{Cognome} (STUDENTI))

Anticipazione della selezione sul join

$$\sigma_C(E_1 \bowtie E_2) \equiv E_1 \bowtie \sigma_C(E_2)$$

– E_1 e E_2 espressioni; C condizione che fa riferimento solo ad attributi di E_2

Esempio

STUDENTI(<u>Matr</u>,Cognome,Nome) ESAMI(<u>Matr</u>,Corso,Voto)

σ_{Corso= 'Basidati'} (STUDENTI⋈ ESAMI) ≡

STUDENTI ⋈ **G**_{Corso= 'Basidati'} (ESAMI)

Anticipazione della proiezione sul join (1)

$$\mathbf{\Pi}_{X1Y2} (E_1 \bowtie E_2) \equiv E_1 \bowtie \mathbf{\Pi}_{Y2}(E_2)$$

- E_1 e E_2 espressioni; X1 e X2 attributi di E_1 e E_2 ; $Y2 \supseteq (X1 \cap X2)$ insieme di attributi che include *tutti* gli attributi di E_2 coinvolti nel join

Esempio

STUDENTI(<u>Matr</u>,Cognome,Nome) ESAMI(<u>Matr</u>,Corso,Voto)

 $\Pi_{Matr,Cognome,Nome,Corso}(STUDENTI \bowtie ESAMI) =$

STUDENTI $\bowtie \Pi_{Matr,Corso}(ESAMI)$

Anticipazione della proiezione sul join (2)

Combinando l'idempotenza delle proiezioni e l'anticipazione della protezione rispetto al join

$$\prod_{Y} (E_1 \bowtie_C E_2) \equiv \prod_{Y} (\prod_{Y1} (E_1) \bowtie_C \prod_{Y2} (E_2))$$

- E_1 e E_2 espressioni; X1 e X2 attributi di E_1 e E_2 ; J1 e J2 attributi di E_1 e E_2 coinvolti nel join;
- $Y1 = (X1 \cap Y) \cup J1; Y2 = (X2 \cap Y) \cup J2;$

(Possiamo eliminare subito gli attributi non coinvolti nel join)

Esempio

STUDENTI(Matr, Cognome, Nome); ESAMI(Matr, Corso, Voto)

$$\Pi_{\text{Cognome,Corso}}(\text{STUDENTI} \bowtie \text{ESAMI}) \equiv \Pi_{\text{Cognome,Corso}}(\Pi_{\text{Matr,Cognome}}(\text{STUDENTI}) \bowtie \Pi_{\text{Matr,Corso}}(\text{ESAMI}))$$

Inglobamento della selezione in X

$$\sigma_C(E_1 \times E_2) \equiv E_1 \bowtie_C(E_2)$$

– E_1 e E_2 espressioni; C condizione che fa riferimento ad attributi di E_1 e E_2

Esempio

STUDENTI(<u>Matr</u>,Cognome,Nome) ESAMI(<u>Matr-st</u>,Corso,Voto)

Distributività della selezione rispetto a U

$$\mathbf{\sigma}_{C}(E_{1} \cup E_{2}) \equiv \mathbf{\sigma}_{C}(E_{1}) \cup \mathbf{\sigma}_{C}(E_{2})$$

− E₁ e E₂ espressioni; C condizione

Esempio

STUDENTI(<u>C.F.</u>,Cognome,Nome) IMP(<u>C.F.</u>,Cognome,Nome)

Distributività della selezione rispetto a -

$$\sigma_C(E_1 - E_2) \equiv \sigma_C(E_1) - \sigma_C(E_2)$$

- $E_1 e E_2$ espressioni; C condizione

(Ne deriva anche distributività rispetto a \cap)

<u>Esempio</u>

STUDENTI(<u>C.F.</u>,Cognome,Nome) IMP(<u>C.F.</u>,Cognome,Nome)

Distributività della proiezione rispetto a U

$$\prod_{X}(E_1 \cup E_2) \equiv \prod_{X}(E_1) \cup \prod_{X}(E_2)$$

- E_1 e E_2 espressioni; X attributi in E_1 e E_2

(NOTA: Non vale distributività della proiezione rispetto a - e \cap)

Esempio

STUDENTI(<u>C.F.</u>,Cognome,Nome) IMP(<u>C.F.</u>,Cognome,Nome)

 $\Pi_{\text{Cognome,Nome}}$ (STUDENTI \cup IMP) \equiv

 $\Pi_{\text{Cognome,Nome}}$ (STUDENTI) $\cup \Pi_{\text{Cognome,Nome}}$ (IMP)

Distributività del join rispetto a U

$$E\bowtie(E_1\cup E_2)\equiv (E\bowtie E_1)\cup (E\bowtie E_2)$$

- E_1, E_2 espressioni

Esempio

STUDENTI(<u>C.F.</u>,Cognome,Nome) IMP(<u>C.F.</u>,Cognome,Nome); TASSE(<u>C.F.</u>,Somma)

TASSE ⋈(STUDENTI ∪ IMP) =

(TASSE ⋈ STUDENTI) ∪ (TASSE ⋈IMP)

Corrispondenza fra op. insiemistici e σ

$$\sigma_{C1 \lor C2}(E) \equiv \sigma_{C1}(E) \cup \sigma_{C2}(E)$$

$$\sigma_{C1 \land C2}(E) \equiv \sigma_{C1}(E) \cap \sigma_{C2}(E) \equiv \sigma_{C1}(E) \bowtie \sigma_{C2}(E)$$

$$\sigma_{C1 \land \neg C2}(E) \equiv \sigma_{C1}(E) - \sigma_{C2}(E)$$

<u>Esempi</u>

ESAMI(Matr, Corso, Voto)

$$\sigma_{Corso='Sistemi' \lor Voto=30}(ESAMI) \equiv$$

$$\sigma_{Corso='Sistemi' \land Voto=30}(ESAMI) \equiv$$

$$\sigma_{\text{Corso}=\text{'Sistemi'}, \neg(\text{Voto}=30)}(\text{ESAMI}) \equiv$$

$$\sigma_{\text{Corso= 'Sistemi'}}$$
 (ESAMI) – $\sigma_{\text{Voto=30}}$ (ESAMI)

Associatività e commutatività op. binari

```
E_1 op (E_2 op E_3) \equiv (E_1 op E_2) op E_3

E_1 op E_2 \equiv E_2 op E_1

• op \in \{ \cup, \cap, \times, \bowtie \}
```

<u>Esempi</u>

STUDENTI(<u>Matr</u>,Cognome,Nome); ESAMI(<u>Matr</u>,Corso,Voto) CORSI(<u>Corso</u>,Docente)

STUDENTI ⋈ (ESAMI ⋈ CORSI) ≡

(STUDENTI ⋈ ESAMI) ⋈ CORSI

STUDENTI ⋈ ESAMI ≡ ESAMI ⋈ STUDENTI

Alcune formule utili

•
$$r \bowtie r \equiv r$$

•
$$r \cup r \equiv r$$

•
$$r \cap r \equiv r$$

•
$$r - r \equiv \emptyset$$

•
$$r \bowtie_{\mathbf{C}} r \equiv \sigma_{C} r$$

•
$$r \cup \sigma_C r \equiv r$$

•
$$r \cap \sigma_C r \equiv \sigma_C r$$

•
$$r - \sigma_C r \equiv \sigma_{\neg C} r$$

•
$$r \cup \emptyset \equiv r$$

•
$$r \cap \emptyset \equiv \emptyset$$

•
$$r - \emptyset \equiv r$$

•
$$\varnothing - r \equiv \varnothing$$

•
$$r \times \emptyset \equiv \emptyset$$

•
$$\sigma_C \varnothing \equiv \varnothing$$

•
$$\prod_X \emptyset \equiv \emptyset$$

Idiomi di interrogazione

- esiste/per ogni
- minimo/massimo
 - assoluto
 - relativo
 - rispondente a
- cardinalità
- copertura

Esiste/per ogni

r(A,B)

 trovare gli A per cui esiste un B che soddisfa la condizione p(B)

$$\prod_{A}(\mathbf{\sigma}_{p(B)}(r))$$

 trovare gli A per i quali tutti i B soddisfano la condizione p(B)

$$\prod_{A}(r) - \prod_{A}(\mathbf{G}_{\neg p(B)}(r))$$

Esiste: esempio

RÉGISTRI

Matr	Corso	Data	Voto
11111	Basidati	20-01-05	28
11111	Sistemi	15-06-05	30
22222	Basidati	21-11-05	27
22222	Sistemi	15-03-05	25
33333	Basidati	16-05-05	30

Trovare gli studenti che hanno preso più di 26 in almeno un esame

$$\Pi_{Matr}(\sigma_{Voto>26}REGISTRI)$$

Matr			
11111			
22222			
33333			

Per ogni: esempio

REGISTRI

Matr	Corso	Data	Voto
11111	Basidati	20-01-05	28
11111	Sistemi	15-06-05	30
22222	Basidati	21-11-05	27
22222	Sistemi	15-03-05	25
33333	Basidati	16-05-05	30

Trovare gli studenti che hanno preso più di 26 in tutti gli esami

$$\Pi_{Matr}(REGISTRI) - \Pi_{Matr}(\sigma_{Voto \leq 26}REGISTRI)$$

Matr		
11111		
33333		

Minimo e massimo assoluto

r(A,B)

• trovare il minimo (massimo) valore di B

minimo:

$$val := \prod_{B}(r)$$

$$val - \prod_{B}(val \bowtie_{B>B'} (\mathbf{p}_{B'\leftarrow B} (val))$$

massimo:

$$val := \prod_{B}(r)$$
 $val - \prod_{B}(val) \bowtie_{B < B'} (\mathbf{p}_{B' \leftarrow B}(val))$

Minimo assoluto: esempio

REGISTRI

Matr	Corso	Data	Voto
11111	Basidati	20-01-05	28
11111	Sistemi	15-06-05	30
22222	Basidati	21-11-05	27
22222	Sistemi	15-03-05	25
33333	Basidati	16-05-05	30

Trovare il voto minimo

VOTI :=
$$\mathbf{\rho}_{V \leftarrow Voto}(\mathbf{\Pi}_{Voto}(REGISTRI))$$

VOTI - $\mathbf{\Pi}_{V}(VOTI)$ $\bigvee_{V > V'}(\mathbf{\rho}_{V' \leftarrow V}VOTI))$

٧	
25	

Massimo assoluto: esempio

RÉGISTRI

Matr	Corso	Data	Voto
11111	Basidati	20-01-05	28
11111	Sistemi	15-06-05	30
22222	Basidati	21-11-05	27
22222	Sistemi	15-03-05	25
33333	Basidati	16-05-05	30

Trovare la data più recente

DATE :=
$$\rho_{D\leftarrow Data}(\Pi_{Data}(REGISTRI))$$

DATE - $\Pi_{D}(DATE \triangleright_{D$

Minimo e massimo relativo

r(A,B)

trovare, per ogni A, il minimo (massimo)
 valore di B

minimo:

$$r - \prod_{A,B} (r \bowtie_{A=A' \land B>B'} (\mathbf{p}_{A',B' \leftarrow A,B}(r))$$

massimo:

$$r - \prod_{A,B} (r \bowtie_{A=A' \land B < B'} (\mathbf{p}_{A',B' \leftarrow A,B}(r))$$

Minimo relativo: esempio

REGISTRI

Matr	Corso	Data	Voto
11111	Basidati	20-01-05	28
11111	Sistemi	15-06-05	30
22222	Basidati	21-11-05	27
22222	Sistemi	15-03-05	25
33333	Basidati	16-05-05	30

Trovare per ogni studente il voto minimo

$$\begin{aligned} \text{VOTI} := \pmb{\rho}_{\text{M,V}\leftarrow\text{Matr,Voto}}(\pmb{\Pi}_{\text{Matr,Voto}}(\text{REGISTRI})) \\ \text{VOTI} - \pmb{\Pi}_{\text{M,V}}(\text{VOTI} \bowtie_{\text{M=M'},\text{V}>\text{V'}}(\pmb{\rho}_{\text{M'},\text{V'}\leftarrow\text{M,V}}\text{VOTI})) \end{aligned}$$

М	V
11111	28
22222	25
33333	30

Massimo relativo: esempio

REGISTRI

Matr	Corso	Data	Voto
11111	Basidati	20-01-05	28
11111	Sistemi	15-06-05	30
22222	Basidati	21-11-05	27
22222	Sistemi	15-03-05	25
33333	Basidati	16-05-05	30

Trovare per ogni corso la data più recente

$$\begin{aligned} &\mathsf{ESAMI} := \rho_{\mathsf{C},\mathsf{D}\leftarrow\mathsf{Corso},\mathsf{Data}}(\Pi_{\mathsf{Corso},\mathsf{Data}}(\mathsf{REGISTRI})) \\ &\mathsf{ESAMI} - \Pi_{\mathsf{C},\mathsf{D}}(\mathsf{ESAMI}) \searrow_{\mathsf{C}=\mathsf{C}'\land\mathsf{D}<\mathsf{D}'}(\rho_{\mathsf{C}',\mathsf{D}'\leftarrow\mathsf{C},\mathsf{D}}\,\mathsf{ESAMI})) \end{aligned}$$

C	D
Basidati	21-11-05
Sistemi	15-06-05

Rispondente a minimo e massimo

r(A,B)

 trovare gli A per cui B ha il valore minimo (massimo)

minimo:

$$\prod_{A} (r - \prod_{A,B} (r \bowtie_{B>B'} (\mathbf{p}_{A',B'\leftarrow A,B} (r)))$$

massimo:

$$\prod_{A} (r - \prod_{A,B} (r \bowtie_{B < B'} (\mathbf{p}_{A',B' \leftarrow A,B} (r)))$$

Rispondente a minimo: esempio

REGISTRI

Matr	Corso	Data	Voto
11111	Basidati	20-01-05	28
11111	Sistemi	15-06-05	30
22222	Basidati	21-11-05	27
22222	Sistemi	15-03-05	25
33333	Basidati	16-05-05	30

Trovare gli studenti che hanno preso il voto più basso

$$VOTI := \mathbf{\rho}_{M,V \leftarrow Matr,Voto}(\mathbf{\Pi}_{Matr,Voto}(REGISTRI))$$
$$\mathbf{\Pi}_{M}(VOTI - \mathbf{\Pi}_{M,V}(VOTI \bowtie_{V>V'}(\mathbf{\rho}_{M',V' \leftarrow M,V}VOTI)))$$

M	
22222	

Rispondente a massimo: esempio

REGISTRI

Matr	Corso	Data	Voto
11111	Basidati	20-01-05	28
11111	Sistemi	15-06-05	30
22222	Basidati	21-11-05	27
22222	Sistemi	15-03-05	25
33333	Basidati	16-05-05	30

Trovare il corso con la data più recente

$$\begin{split} &\mathsf{ESAMI} := \rho_{\mathsf{C},\mathsf{D}\leftarrow\mathsf{Corso},\mathsf{Data}}(\prod_{\mathsf{Corso},\mathsf{Data}}(\mathsf{REGISTRI})) \\ &\prod_{\mathsf{C}}(\mathsf{ESAMI} - \prod_{\mathsf{C},\mathsf{D}}(\mathsf{ESAMI} \bowtie_{\mathsf{D}<\mathsf{D}'}(\rho_{\mathsf{C}',\mathsf{D}'\leftarrow\mathsf{C},\mathsf{D}}\mathsf{ESAMI}))) \end{split}$$

С	
Basidati	

Idiomi di interrogazione

- esiste/per ogni
- minimo/massimo
 - assoluto
 - relativo
 - rispondente a
- cardinalità
- copertura

Cardinalità (1)

r(A,B)

• trovare gli A che sono associati a

almeno due B

$$\prod_{A}(r) \bowtie_{A=A' \land B\neq B'} (\mathbf{p}_{A',B'\leftarrow A,B}(r))$$

al più uno B

$$\prod_{A}(r) - \prod_{A}(r) \bowtie_{A=A' \land B \neq B'} (\mathbf{p}_{A',B' \leftarrow A,B}(r))$$

Cardinalità: esempio

REGISTRI

Matr	Corso	Data	Voto
11111	Basidati	20-01-05	28
11111	Sistemi	15-06-05	30
22222	Basidati	21-11-05	27
22222	Sistemi	15-03-05	25
33333	Basidati	16-05-05	30

Trovare gli studenti che hanno fatto almeno due esami

ESAMI :=
$$\rho_{M,C\leftarrow Matr,Corso}(\Pi_{Matr,Corso} REGISTRI)$$

 $\Pi_{M}(ESAMI)_{M=M',C\neq C'}(\rho_{M',C'\leftarrow M,C}(ESAMI))$

M	
11111	
22222	

Cardinalità: esempio

REGISTRI

Matr	Corso	Data	Voto
11111	Basidati	20-01-05	28
11111	Sistemi	15-06-05	30
22222	Basidati	21-11-05	27
22222	Sistemi	15-03-05	25
33333	Basidati	16-05-05	30

Trovare gli studenti che hanno fatto al più un esame:

$$\begin{aligned} &\mathsf{R1} := \pmb{\rho}_{\mathsf{M},\mathsf{C}\leftarrow\mathsf{Matr},\mathsf{Corso}}(\pmb{\Pi}_{\mathsf{Matr},\mathsf{Corso}}\,\mathsf{REGISTRI}) \\ &\mathsf{ESAME} := \pmb{\Pi}_{\mathsf{M}}(\mathsf{R1}) \nearrow_{\mathsf{M}=\mathsf{M'},\mathsf{C}\neq\mathsf{C'}}(\pmb{\rho}_{\mathsf{M'},\mathsf{C'}\leftarrow\mathsf{M},\mathsf{C}}(\mathsf{R1})) \\ &(\pmb{\Pi}_{\mathsf{M}}\,\mathsf{R1}) - \mathsf{ESAME} \end{aligned}$$

M	
33333	

Cardinalità (2)

r(A,B)

- trovare gli A che sono associati a:
 - almeno tre B

$$\prod_{A}(\sigma_{A=A'\land A=A''\land B\neq B'\land B\neq B''\land B'\neq B''}$$

$$(r \times \rho_{A',B'\leftarrow A,B}(r) \times \rho_{A'',B''\leftarrow A,B}(r)))$$

- almeno n B(con n-1 prodotti cartesiani)
- al più n B $\prod_{A}(r) "A \text{ associati ad almeno } n+1 B"$
- esattamente n B
 "A associati ad almeno n B" "A associati ad almeno n+1 B"

Copertura

$$r(A,B) \in s(B)$$

trovare gli A che sono associati a tutti i valori di B in s

$$\Pi_A(r) - \Pi_A((\Pi_A(r) \times s) - r)$$

Copertura: esempio

ESAMI

Matr	Esame
11111	CS101
22222	CS102
11111	CS102

CORSI

Esame	Titolo
CS101	Basidati
CS102	Sistemi

Trovare la matricola degli studenti che hanno fatto tutti gli esami

$$CO := \prod_{Esame}(CORSI)$$

$$\Pi_{Matr}(ESAMI) - \Pi_{Matr}((\Pi_{Matr}(ESAMI) \times CO) - ESAMI)$$

Matr

11111

Algebra relazionale – Esercizi

CELLULARE (<u>Codice</u>, CFUtente, Modello, Marca, Colore) ABBONAMENTO(<u>Numero</u>, CFUtente, Operatore, Tariffa) UTENTE(<u>CF</u>, Nome, Cognome, Città)

 determinare il codice dei cellulari di marca Nokia di colore rosso oppure nero

$$\Pi_{\text{Codice}}(\sigma_{(\text{Colore}='\text{rosso'}, \text{Colore}='\text{nero'}), \text{Marca}='\text{Nokia'}} CELLULARE)$$

CELLULARE (<u>Codice</u>, CFUtente, Modello, Marca, Colore) ABBONAMENTO(<u>Numero</u>, CFUtente, Operatore, Tariffa) UTENTE(<u>CF</u>, Nome, Cognome, Città)

• determinare il codice dei cellulari degli utenti residenti a Milano

Interrogazione 3 (1)

CELLULARE (<u>Codice</u>, CFUtente, Modello, Marca, Colore) ABBONAMENTO(<u>Numero</u>, CFUtente, Operatore, Tariffa) UTENTE(<u>CF</u>, Nome, Cognome, Città)

 determinare la marca dei cellulari degli utenti serviti da Tim nella città di Milano

$$\text{UT_TIM} := \prod_{\text{CFUtente}} (\sigma_{\text{Operatore}='\text{TIM}'} \text{ABBONAMENTO})$$

$$\text{UT_MIL} := \rho_{\text{CFUtente}} \leftarrow_{\text{CF}} (\prod_{\text{CF}} (\sigma_{\text{Città}='\text{Milano}'} \text{UTENTE}))$$

$$\Pi_{Marca}((UT_TIM \cap UT_MIL)) \bowtie CELLULARE)$$

Interrogazione 3 (2)

CELLULARE (<u>Codice</u>, CFUtente, Modello, Marca, Colore) ABBONAMENTO(<u>Numero</u>, CFUtente, Operatore, Tariffa) UTENTE(<u>CF</u>, Nome, Cognome, Città)

 determinare la marca dei cellulari degli utenti serviti da Tim nella città di Milano

```
\begin{split} &\text{UT\_TIM} := \prod_{\text{CFUtente}} (\sigma_{\text{Operatore}='\text{TIM}'} \text{ABBONAMENTO}) \\ &\text{UT\_MIL} := \prod_{\text{CF}} (\sigma_{\text{Citt\`a}='\text{Milano}'} \text{UTENTE}) \\ &\text{CELL\_TIM} := \prod_{\text{CFUtente}, \text{Marca}} (\text{UT\_TIM} ) \subset \text{CELLULARE}) \\ &\text{CELL\_MIL} := \prod_{\text{CFUtente}, \text{Marca}} (\text{UT\_MIL}) \supset \text{CF=CFUtente} \subset \text{CELLULARE}) \end{split}
```

 $\Pi_{\mathsf{Marca}}(\mathsf{CELL_TIM} \cap \mathsf{CELL_MIL})$

CELLULARE (<u>Codice</u>, CFUtente, Modello, Marca, Colore) ABBONAMENTO(<u>Numero</u>, CFUtente, Operatore, Tariffa) UTENTE(<u>CF</u>, Nome, Cognome, Città)

 determinare gli operatori che servono tutti gli utenti della città di Milano

```
\begin{split} &\text{UT\_MIL} := \pmb{\rho}_{\text{CFUtente} \leftarrow \text{CF}} \left( \, \prod_{\text{CF}} (\pmb{\sigma}_{\text{Citt\`{a}}='\,\text{Milano}'}, \text{UTENTE}) \, \right) \\ &\text{OP} := \prod_{\text{Operatore}} (\text{ABBONAMENTO}) \\ &\text{TUTTI} := \text{UT\_MIL} \bigstar \text{OP} \\ &\text{ABB\_MIL} := \prod_{\text{CFUtente}, \text{Operatore}} (\text{UT\_MIL} \bowtie \text{ABBONAMENTO}) \\ &\prod_{\text{Operatore}} (\text{ABB\_MIL}) - \prod_{\text{Operatore}} (\text{TUTTI} - \text{ABB\_MIL}) \end{split}
```

CELLULARE (<u>Codice</u>, CFUtente, Modello, Marca, Colore) ABBONAMENTO(<u>Numero</u>, CFUtente, Operatore, Tariffa) UTENTE(<u>CF</u>, Nome, Cognome, Città)

determinare la tariffa minima applicata da Tim

$$TAR_TIM := \prod_{Tariffa} (\sigma_{Operatore='Tim'} ABBONAMENTO)$$

$$TAR_TIM - \prod_{Tariffa} (TAR_TIM) \longrightarrow_{Tariffa>Tariffa'} (\mathbf{p}_{Tariffa'} \leftarrow_{Tariffa} TAR_TIM))$$

CELLULARE (<u>Codice</u>, CFUtente, Modello, Marca, Colore) ABBONAMENTO(<u>Numero</u>, CFUtente, Operatore, Tariffa) UTENTE(<u>CF</u>, Nome, Cognome, Città)

 determinare gli utenti (CF, Nome, Cognome e Città) per i quali tutti i numeri di telefono loro intestati hanno tariffa maggiore di 100

 $UT_MIN := \prod_{CFUtente} (\sigma_{Tariffa \le 100} ABBONAMENTO)$

 $UT_RIS := \Pi_{CFUtente}(ABBONAMENTO) - UT_MIN$

T_{CF,Nome,Cognome,Città}(UT_RIS CFUtente=CFUTENTE)

RADIO (<u>Codice</u>, Nome, Frequenza, Luogo)
PROGRAMMA (<u>Codice</u>, Nome, Conduttore, FasciaOraria, Durata,
Tipo, CodiceRadio)

 determinare i nomi delle radio che trasmettono programmi non musicali nella fascia del mattino e della sera ma non nella fascia del pomeriggio

```
\begin{split} \text{MAT} := & \prod_{\text{CodiceRadio}} (\sigma_{\text{Tipo} \neq \text{'musicale'} \wedge \text{FasciaOraria=' mattina'}} \text{PROGRAMMA}) \\ \text{SER} := & \prod_{\text{CodiceRadio}} (\sigma_{\text{Tipo} \neq \text{'musicale'} \wedge \text{FasciaOraria=' sera'}} \text{PROGRAMMA}) \\ \text{POM} := & \prod_{\text{CodiceRadio}} (\sigma_{\text{Tipo} \neq \text{'musicale'} \wedge \text{FasciaOraria=' pomeriggio'}} \text{PROGRAMMA}) \\ \text{COD\_RIS} := & (\text{MAT} \cap \text{SER}) - \text{POM} \end{split}
```

RADIO (<u>Codice</u>, Nome, Frequenza, Luogo)
PROGRAMMA (<u>Codice</u>, Nome, Conduttore, FasciaOraria, Durata,
Tipo, CodiceRadio)

 determinare, per ogni radio, i codici dei programmi che hanno durata minima

```
PROG := \prod_{Codice, Durata, CodiceRadio} (PROGRAMMA)
```

$$PROG' := \rho_{C',D',CR' \leftarrow Codice,Durata,CodiceRadio}(PROG)$$

$$\Pi_{\text{Codice,CodiceRadio}}(PROG) -$$

$$\Pi_{\text{Codice,CodiceRadio}}(PROG) \sim \text{CodiceRadio} \sim \text{CodiceRadio} (PROG')$$

RADIO (<u>Codice</u>, Nome, Frequenza, Luogo)
PROGRAMMA (<u>Codice</u>, Nome, Conduttore, FasciaOraria, Durata,
Tipo, CodiceRadio)

 determinare i nomi delle radio che trasmettono almeno due programmi non musicali

```
\begin{split} &\text{NO\_MUS} := \prod_{\text{Codice,CodiceRadio}} (\sigma_{\text{Tipo} \neq \text{'musicale'}} \text{PROGRAMMA}) \\ &\text{NO\_MUS'} := \rho_{\text{C',CR'} \leftarrow \text{Codice,CodiceRadio}} (\text{NO\_MUS}) \\ &\text{COD\_RIS} := \prod_{\text{CodiceRadio}} (\text{NO\_MUS}) \bowtie_{\text{CodiceRadio} = \text{CR'} \land \text{Codice} \neq \text{C'}} \text{NO\_MUS'}) \end{split}
```

RADIO (<u>Codice</u>, Nome, Frequenza, Luogo)
PROGRAMMA (<u>Codice</u>, Nome, Conduttore, FasciaOraria, Durata,
Tipo, CodiceRadio)

 determinare i nomi delle radio che non hanno alcun programma musicale

$$\begin{aligned} & \mathsf{MUS} := \prod_{\mathsf{CodiceRadio}} \left(\sigma_{\mathsf{Tipo}='\,\mathsf{musicale'}} \mathsf{PROGRAMMA} \right) \\ & \mathsf{NO_MUS} := \prod_{\mathsf{Codice}} \left(\mathsf{RADIO} \right) - \rho_{\mathsf{Codice}\leftarrow\mathsf{CodiceRadio}} \left(\mathsf{MUS} \right) \end{aligned}$$

RADIO (<u>Codice</u>, Nome, Frequenza, Luogo)
PROGRAMMA (<u>Codice</u>, Nome, Conduttore, FasciaOraria, Durata,
Tipo, CodiceRadio)

 determinare i nomi delle radio che hanno programmi musicali condotti da DjX

$$COD_RIS := \prod_{CodiceRadio} (\sigma_{Tipo='musicale' \land Conduttore='DjX'} PROGRAMMA)$$

RADIO (<u>Codice</u>, Nome, Frequenza, Luogo)
PROGRAMMA (<u>Codice</u>, Nome, Conduttore, FasciaOraria, Durata,
Tipo, CodiceRadio)

 determinare i nomi delle radio che trasmettono programmi musicali o quiz

COD_RIS :=
$$\Pi_{\text{CodiceRadio}}$$
 ($\sigma_{\text{Tipo='musicale'}}$ \rangle Tipo='quiz' PROGRAMMA)

RADIO (<u>Codice</u>, Nome, Frequenza, Luogo)
PROGRAMMA (<u>Codice</u>, Nome, Conduttore, FasciaOraria, Durata,
Tipo, CodiceRadio)

 determinare i nomi delle radio che trasmettono programmi musicali e quiz

```
MUS := \prod_{CodiceRadio} (\sigma_{Tipo='musicale'} PROGRAMMA)
```

QUIZ :=
$$\Pi_{\text{CodiceRadio}}$$
 ($\sigma_{\text{Tipo}='\text{quiz}'}$ PROGRAMMA)

$$COD_RIS := MUS \cap QUIZ$$

VINCENZO CALABRÒ

LinkedIn vincenzocalabro

www.vincenzocalabro.it